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Valence bond wavefunctions were constructed for H2. Use of Slater exponents resulted in very 
slow convergence to the ground state energy. Convergence was improved by optimizing exponents 
which were found to increase as the principal quantum number n. However, this gave problems of 
linear dependence since optimum orbitals were strikingly similar for all n. The best function without 
angular correlation contained 27 terms constructed from ls, 3s, 2p0, 3do, 4f0, and 59o orbitals and 
gave an energy of -1.1594 a.u. The best function with angular correlation gave E = -  1.1656 a.u. 

Fiir das Hz-Molekiil werden Wellenfunktionen nach der Valenzstrukturmethode konstruiert. 
Die Benutzung yon Exponenten nach Slater fiihrt zu einer sehr langsamen Konvergenz zur Grund- 
zustandsenergie. Die Konvergenz wurde dutch Optimierung der Exponenten verbessert, wobei 
diese mit der Hauptquantenzahl ansteigen. Dabei ergab sich jedoeh das Problem linearer Abh~ngigkeit 
der Funktionen, da die optimalen Orbitale sehr ~ihnlich fiir alle n waren. Die beste Funktion ohne 
Winkelkorrelation enthielt 27 Terme, die aus den Orbitalen ls, 3s, 2p 0, 3do, 4f0 und 5g 0 konstruiert 
waren, und ergab eine Energie yon -1,1594 A.E. Die beste Funktion mit Winkelkorrelation ergab 
E = - 1,1656 A.E. 

Des fonctions d'onde de liaison de valence sont construites pour H 2. L'emploi d'exposants de 
Slater entratne une tr6s faible convergence vers l'6nergie de l'6tat fondamental. La convergence a 6t6 
am61ior6e par optimisation des exposants qui croissent comme le nombre quanfique principal n. 
Cependant, ceci erie des probl6mes de d6pendance lin6aire car les orbitales optimales sont 6tonnement 
similaires pour tousles n. La meilleure fonction sans corr61ation angulaire contient 27 termes construits 

partir d'orbitales ls, 3s, 2po, 3do, 4f0 et 59o et donne une 6nergie de - 1,1594 u.a. La meilleure fonction 
avec corr61ation angulaire donne E = -1,1656 u.a. 

1. Introduction 

In  the  cou r se  of  s o m e  o t h e r  w o r k  we w a n t e d  a fair ly c o m p l e t e  va l ence  b o n d  

(VB) w a v e f u n c t i o n  for H2  a n d  were  su rp r i sed  to  f ind n o n e  a m o n g  the  m a n y  
p u b l i s h e d  H2 ca lcu la t ions .  W e  p r e sen t  he re  the  resul ts  o f  such  a c a l c u l a t i o n  

us ing  type  o rb i t a l s  (STO's )  t h r o u g h  p r inc ipa l  q u a n t u m  n u m b e r  6. 

W h e n  this  w o r k  was  begun ,  the  on ly  p u b l i s h e d  V B  ca l cu l a t i ons  on  H2 were  

the  o r ig ina l  H e i t l e r  a n d  L o n d o n  c a l c u l a t i o n  [1] wh ich  gave  b i n d i n g  ene rgy  of  
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3.14 eV ( =  a total energy of 1.115 a.u. 1) and early modifications of this by Wang 
[5] (scaling), Rosen [6] (polarization) and Weinbaum [7] (ionic terms). It is 
interesting to note that the Heit ler-London calculation was not done variationally, 
and in fact preceded Eckart 's  statement of the variational principle [8] by several 
years. After our calculations were underway, Bowen [9], in a short note, reported 
a 12-term VB calculation using ls, 2ptr and 3dtr orbitals with a common orbital 
exponent. His best total energy was -1 .1540  a.u. 

The  LCAO M O  CI calculations of McLean, Weiss and Yoshimine [10] 
should also be mentioned. Their MO's  were of particularly simple form and 
hence, some of their wavefunctions are equivalent to VB functions. In particular 
their function X (see Table 1 of Ref. [10]) which gives a total energy of - 1.1672 a.u. 
can be rewritten as a VB function involving ls, ls', 2s, 2s', 2ptr and 2pro orbitals. 
However, McLean, Weiss and Yoshimine do not give details of their function X. 

�9 They list instead coefficients and exponents for their slightly poorer  function IX 
with which most  of their calculations were made. Function IX is not equivalent 
to a VB function. 

These calculations and ours to be mentioned below may be compared to the 
very accurate 100-term expansion of Ko~os and Wolniewicz [11] who compute 
the H2 potential curve and find it to have a minimum of -1.17447983 a.u. at 
Re= 1.4010784a.u. Their curve gives a computed dissociation energy which 
agrees with the experimental to within a fraction of a wave number. The 3.8 c m -  
discrepancy reported by Ko~os and Wolniewicz has since been removed by a 
reexamination of the experimental data [12]. 

2. Computational Details 

Since we shall consider only the singlet ground state of the 2-electron hydrogen 
molecule, the antisymmetric spin part  of the wavefunction may be factored out 
and discarded. Henceforth, the symmetric space part  of the wavefunction will be 
referred to simply as "the wavefunction". 

It  will be convenient to introduce some notation before proceeding. Given 
the pair of atomic orbitals (AO's) Zi and Z~, let a second subscript be used to 
indicate the H a tom on which the AO is centered, and define the covalent function 
constructed from this pair by 

(ZiZj)c = �88 [Zig0) ZjB(2) + Zig(2) ZjB( 1 ) + ZjA(1) ZiB(2) + Xjg(2) Zm(1) ] (1) 

with the special case 

(Z,Z,)c - �89 [Z,A(I) Zm(2) + Z,A(2) Zm (i)] (2) 

1 This is not actually the energy reported by Heitler and London. They used an upper bound 
approximation to the exchange integral, and from their Fig. 1, their best binding energy appears 
to be about 2.3 eV. Sugiura [2] evaluated the integral exactly to obtain a binding energy of 3.2 eV. 
Coulson [3] found numerical errors in Sugiura's work and reported a corrected binding energy 
of 3.14 eV. Many of the early papers do not state the conversion factors used. Here we shall use 1 a.u. 
of length = 0.52917 • and 1 a.u. of energy = 27.211 eV = 627.5 kcal/mole [4]. The total energy of 
1.115 a.u. mentioned above was obtained using this energy conversion factor and Coulson's binding 
energy. 
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and the ionic function by 

OQZi), = �88 [ZiA( 1 ) ZjA(2) + Zig(2) ZjA( 1 ) + Xm( 1 ) Zj~(2) + Zm(2) ZjB(1)] (3) 

with the special case 

(•i)fi)l = 1DQA(1) )QA(2) + )fiB(i ) Zm(2)] ' (4) 

The AO's used were complex Slater type orbitals 

)f = X,i,, = (20 ("+~) [(2n)!] -~r"- I  e-~' Ylm( O, 49), (5) 

with the spherical harmonics defined by 

Yi,,(O, 49)= i~,,(cos O) ~m(49) = i~,,(cos O) (2 70 -~ e 'mr (6) 

and the normalized associated Legendre polynomials by 

]1 / d V +m 
~m(COS 0) = 2--~.T [ - - 2 - - - 1  [ 2 / + 1  X (l(l-m)!+ m)! ~x ( -  sin 0)m~-dc0~)  (c~ 0 -  1)i" (7) 

These complex STO's transform easily to prolate spheriodal coordinates and 
somewhat simplify evaluation of the necessary 2-center integrals. Such an STO 
on center A becomes 

Zg(/~, V, 49)= (20 "+~ [(2n)!] -~ (R/Z) "-1 (# + v) "-1 e -~R(u+'O/2 
(8) 

x P,,. [ ( !  + ~v)/(~ + v)] a~m(49) 

which is related to a similar STO on B by 

ZB(#, V, 49) = ZA(#, -- V, 49). (9) 

Our total wave function was of the form 

W(1, 2) = ~ [aij(ZiZj) c + bijO~i)fj)i ] (10) 
t , J  

where the coefficients aij and b u were determined variationally (or set equal to 
zero for those terms to be omitted). The calculations were carried out in standard 
fashion. Required integrals over AO's were first computed and then compiled to 
give elements of the Hamiltonian matrix which was diagonalized to give the 
total molecular energy and the corresponding best coefficients in Eq. (10). The 
total energy was then minimized with respect to orbital exponents (~ in Eq. (5) 
and Eq. (8)) by a steepest descents procedure coupled to a search by "golden 
section" (see Appendix) along the gradient. We shall only outline these steps to 
indicate the methods used. Details, including listings of all programs, are given 
in the Ph.D. Thesis of Thomas [13]. 

One-electron integrals were expressed in terms of overlap integrals which were 
evaluated in double-precision using Kontani's auxiliary functions A,(x) and 
B,(x) [14]. Our computed A,'s and B,'s were checked against the 14-place tables 
of Miller, Gerhauser and Matsen [15]. The first 7 figures (ff the overlap integrals 
themselves were compared, up to principal quantum number 2, to Sahni and 
Cooley's table [16]. For higher principal quantum numbers, our formulas were 
compared to those of Lofthus [17]. An alternative method of evaluating overlap 
9* 
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integrals described by Wahl, Cade and Roothaan [18] was not used because we 
lacked the necessary amount of core storage. 

One-center electron repulsion integrals were evaluated in closed form making 
use of the usual expansion of 1/r12 in spherical harmonics and a program for 
the evaluation of Clebsch-Gordan coefficients. Two-center Coulomb and hybrid 
integrals were computed by the method of Wahl, Cade and Roothaan [18] which 
consists of an analytical integration over the coordinates of electron 1 followed 
by a Gauss-Legendre numerical integration Over electron 2. For the difficult 
exchange integrals we again followed Wahl, Cade and Roothaan [18] who 
transform to prolate spheroidal coordinates and use the Neumann expansion 
for 1/r12. Integration over the coordinate q~ is then straightforward, that over v 
is more difficult, but can be accomplished by recurrence relations, leaving integra- 
tion over # which was done numerically by Simpson's rule. One-center electron 
repulsion integrals and 2-center Coulomb and hybrid integrals were checked 
against Sahni and Cooley's tables [16] for principal quantum number less than 
or equal to 2. Those with higher principal quantum number and exchange integrals 
were checked against hand calculations. 

Matrix diagonalizations were carried out by the Givens method [-19] using 
a modified version of a program written by Prosser [20]. To test the stability 
of the entire calculation, the last three digits of all integrals were replaced by 
random numbers. The energy was unchanged up to the fifth digit. As a further 
check, Weinbaum's VB calculation [7] was repeated with our program. Total 
energy and ionic-covalent mixing coefficient agreed with his to as many figures 
as listed. As a result of these checks, we feel that the energies quoted below are 
accurate to at least 5 figures. 

3. Results 

A. Two-STO Functions without Angular Correlation 

Some preliminary calculations were made using wavefunctions constructed 
from only 2 STO's. This was done to estimate the importance of various terms 
to be included in more complete wavefunctions below, and also in part to test 
various optimization schemes. In each case the total wavefunctions (10) included 
all 4 possible covalent terms (1) and (2) plus the two ionic functions (4). Ionic 
functions of the form (3) were not used. 

Results with exponents fixed by Slater's rules [21] for l s - n l  functions are 
shown in Table 1. The energies are very poor and in fact, caused us to abandon 
our original plan of using only orbitals of this type. 

Optimization of orbital exponents improves the energy considerably as shown 
in Tables 2 and 3. All optimizations were carried out from at least 3 different 
sets of starting parameters. Wavefunctions and energies always converged to 
the same values with no indication of multiple minima. Perhaps the most notable 
feature of these results is that all energies are almost the same. The best differs 
from the worst by only 0.6 kcal/mole. This implies that in going from n = 2 to 
n = 6 for the second STO there is very little change in the wavefunction. Apparently 
optimization forces all the second STO's to become very nearly equal. This is 
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Tab le  1. Energies of l s -nl  functions with Slater exponents ~ 

n l ( Energy  

2 0 0.5000 - 1.1200727 
3 0 0.3333 - 1 . 1 0 7 4 7 3 9  
4 0 0.2500 -1 .1067287  
2 1 0.5000 - 1.1067332 
3 1 0.3333 - 1 . 1 0 6 7 7 1 2  

4 1 0.2500 -1 .1066601  

The exponen t  of the l s  o rb i ta l  is 1.0000, and  the in te rnuc lear  d is tance  is he ld  fixed at  1.4008 a.u.; 

m = 0 for al l  orbitals .  

Tab le  2. Optimum orbital exponents, internuclear distances and energies of ls-ns  functions 

n 

2 3 4 5 6 

~ls 0.9648 1.0770 1.1105 1.1389 1.1498 
~,s 1.1216 1.6005 2.0211 2.4665 2.9989 
R(a.u.) 1.4201 1.3995 1.4172 1.4120 1.4023 
E(a.u.) - 1.1524792 - 1.1529231 - 1.1527434 - 1.1524906 - 1.1521590 

Tab le  3. Optimum exponents, internuclear distances and energies of ls-np functions a 

n 

2 3 4 5 6 

~ls 1.1876 1.1888 1.1957 1.1780 1.1840 
~np 1.9102 3.0000 3.9993 5.0005 6.0034 
R (a.u.) 1.4150 1.4289 1.4156 1.4366 1.4320 
E(a.u.) - 1.1529030 - 1.1529804 - 1.1526246 - 1.1523442 - 1.1519400 

a On ly  the pa (m = 0) funct ions  were used. 

confirmed by a plot of the square of the p radial wavefunction in Fig. 1. The 
wavefunctions here are not quite those of Table 3, but are from very similar 
results in which the internuclear distance and the ls exponent were fLxed at 
1.4100 a.u. and 1.19 while the second orbital exponent was optimized. (This gave 
a best ~2p = 1.87 in agreement with McLean, Weiss and Yoshimine [10]). The 
similarity of these functions with varying n is the more striking if one realizes 
that the radial functions with Slater exponents and with n > 2 are too small to 
be visible on Fig. 1. A plot of the-optimized n s  orbitals also shows them all to 
be nearly the same. It is of course well known that functions with Slater or 
hydrogenic exponents, the magnitudes of which decrease as (l/n), rapidly become 
too diffuse. In fact, as Shull and LiSwdin [22] have pointed out, hydrogenic orbitals 
do no~ form a complete set without the continuum. They recommend instead a 
set with constant exponent. From our results it appears that even that set is too 
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Fig. 1. Square of optimized radial wavefunctions for np orbitals 

diffuse for the best representation of a single shell, and that the magnitude of the 
exponent should increase with n. 

Fixing one electron on one nucleus and plotting the density of the other along 
the internuclear axis [13] shows that p functions contribute somewhat more 
than s functions to left-right correlation. On the other hand, s functions are better 
than p's for in-out correlation as seen from similar plots with one electron fixed 
at the center of the bond and the density graphed along a line from the center 
and perpendicular to the bond. Thus, one would expect a mixture of s and p 
functions to be more efficient than the same number of either alone. Other than 
this rather trivial result, the preliminary calculations with l s - n s  and l s - n p  
functions were not as helpful as anticipated. Since optimization made all the 
functions much the same, all lowered the energy by roughly the same amount, 
and we could not tell which would contribute most to more elaborate wavefunctions. 

Several I s -  nl functions with l >  2 were also tried (Table 4). The exponents 
were not as carefully optimized as above, but a comparison of Table 4 with the 
completely optimized Weinbaum energy of -1 .1479 a.u. shows that these func- 
tions do not help much. Coefficients of the nl terms in the complete wavefunction 
are found to be small. 

Table 4. Resul ts  with l s - n l  funct ions  a 

n, l 

3,2 4,3 5,4 6,5 

~.~ 3.0000 4.0000 5.0000 6.0000 
E(a.u.) - 1.1482173 - 1.1478240 - 1.1477488 - 1.1477211 

a The exponent of the ls orbital is 1.1800, and the internuclear distance is 1.4250; m = 0 for all 
orbitals. 



VB Func t ions  for H 2 121 

B. Many-STO Functions without Angular Correlation 

From Tables 2 and 3 it would appear that the best 3-STO function should 
be constructed from a ls orbital and two of the three 3s, 2p, 3p. The ls, 2p, 3p 
function was tried first resulting in a computer overflow during matrix diagonali- 
zation. Difficulty was not experienced at the start of the calculation with equal 
2p and 3p orbital exponents, but arose as the orbital optimization proceeded. 
A ls, 2s, 3s function also gave trouble, but ls, 2p, 3s did not. Tracing down the 
overflow showed these results to be a further and more compelling demonstration 
of the point made in Fig. 1. The optimized orbitals 2p and 3p are so similar, as 
are 2s and 3s, that their integrals are identical to the accuracy of the computer. 
In view of this, no further wavefunctions were constructed using two orbitals of 
the same symmetry, save the l s -  ns combinations which gave no trouble. 

Table 5 summarizes results with various optimized 3-STO functions. The 
2- and 3-STO wavefunctions are listed in Thomas' thesis and will not be given 
here. Examination of these functions shows that the coefficient of a given term 
is nearly the same in the 3- as in the 2-STO calculation. This means that the 
contribution of a given term is almost independent of the other terms in the 
wavefunction. This will also be seen to hold for most coefficients in Table 7 
below. 

The best 3-STO function, that conc,tructed from ls, 2p, and 3s orbitals, was 
then improved by the addition of 3d; 3d and 4 f ;  3d, 4 f  and 5g orbitals. The last 
two of these were not optimized completely with respect to orbital exponents 
and internuclear distance. Results are in Tables 6 and 7. Although the contribution 
of each term is usually fairly constant from function to function, it would have 
been difficult to predict the relative importance of the terms. For example, the 
coefficient of (2p2p) c is less than 1/100 times that of (2p3s)o and (3s3d)c is as 
important as (ls2p) c. 

Table  5. Orbital exponents, internuclear distances and energies of  3-STO functions with m = 0 

n,n 

2,2 3,3 3,2 4,2 5,2 6,2 

( is  1.0257 1.0771 1.0735 1.1378 1.1540 1.1600 
(,2 1.2062 1.6121 1.6349 2.0180 2.5013 3.0000 
~np 1.8847 3.0226 1.9179 1.9046 1.9013 1.9000 
R(a.u.) 1.4172 1.4168 1.4133 1.4211 1.4216 1.4219 
E(a.u.) - 1.1588018 - 1.1587281 - 1.1588177 - 1.1583010 - 1.1580559 - 1.1577347 

Table  6. Orbital exponents, internuclear distances and energies of 4-, 5- and 6-STO functions with m = 0 

(1~ (2~ (a~ (aa (4s (~g R (a.u.) E(a.u.) 

1.0900 1.9000 1.6300 3.0000 - -  - -  1.4100 - 1.1592942 
1.0800 1.9000 1.6400 3.0000 4.0000 - -  1.4100 - 1.1593746 
1.0800 1.9000 1.6400 3.0000 4.0000 5.0000 1.4100 - 1.1594022 
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Table 7. Coefficients of the 4-, 5- and 6-STO functions with m = 0 

Number of STO's 

Term 4 5 6 

(lsls) c 1.045 1.067 1.067 
(ls2p)c 0.02544 0.02422 0.02453 
( 1 s 3S)c - 0.06164 - 0.09264 - 0.09228 
(ls3d) c -0.01516 -0.01566 -0.01574 
( ls4f)  c - -  - 0.001916 -0.001994 
(ls59)c - -  - -  0.001531 
(2p2p) c 0.0003636 0.0008942 0.0007832 
(2p3s)c 0.08904 0.08992 0.08976 
(2p3d)c 0.0009548 0.001276 0.001126 
(2p4f)c - -  0.0003048 0.0001748 
(2p59)c - -  - -  - 0.01301186 
(3s3s)c 0.03204 0.03368 0.03314 
(3s3d)c 0.02664 0.02632 0.02640 
(3s4f) c - -  0.004144 0.004136 
(3s 5#) c - -  - -  - 0.0003009 
(3d3d)c 0.00002680 0.00004872 - 0.00001 t 10 
(3d4f) c - -  0.00001954 - 0.00009060 
(3d59)c - -  - -  0.00002137 
( 4 f 4 f )  c - -  0.0003046 0.0002588 
(4f5O)c - -  - -  0.0005228 
(5g5#) c - -  - -  0.0002084 
(lsls)l 0.2718 0.2796 0.2788 
(2p2p) t - 0.02468 - 0.02506 - 0.02498 
(3s3s)i - 0.1912 - 0.1957 - 0.1950 
(3d3d)~ - 0.004482 - 0.004380 - 0.004320 
( 4 f 4 f )  I - -  - 0.002462 - 0.002452 
(595#) ~ - -  - -  - 0.001279 

T h e  c o m p u t a t i o n  t i m e  b e c a m e  excess ive  for  t h e s e  l a r g e r  f u n c t i o n s .  E a c h  

e n e r g y  e v a l u a t i o n  r e q u i r e d  a b o u t  1 h o u r  for  4 - S T O ,  2 h o u r s  for  5 - S T O ,  a n d  5 

h o u r s  for  6 - S T O  f u n c t i o n s  o n  a n  I B M  7072.  

T h e  6 - S T O  o- f u n c t i o n  w i t h  e n e r g y  - 1 . 1 5 9 4 0 2 2  a.u.  is b e l o w  the  a r e s u l t  o f  

-1.15881 a.u. o b t a i n e d  b y  S c h w a r t z  a n d  S c h a a d  1-23] f r o m  a 7 - t e r m  G a u s s i a n  

f u n c t i o n ,  a n d  a l so  b e l o w  t h e  - 1 . 1 5 9 1 9 a . u .  of  F r a g a  a n d  R a n s i l ' s  1 2 - t e r m  

L C S T O  S C F  M O  + C I  c a l c u l a t i o n  w i t h  l s ,  2s  a n d  2 p a  bas i s  f u n c t i o n s  [24] .  I t  is 

w i t h i n  0 .015 a.u.  = 0.9 k c a l / m o l e  of  H a g s t r o m  a n d  S h u l l ' s  n e a r  o- l i m i t  f r o m  a 

2 1 - t e r m  e l l i p t i ca l  c o o r d i n a t e  e x p a n s i o n  [25] .  

C. Functions with Angular Correlation 

T a b l e s  8 a n d  9 s h o w  t he  effect  of  i n c l u d i n g  np+ a n d  np_ t o  a c c o u n t  for  a n g u l a r  

c o r r e l a t i o n .  T h e  f i rs t  t w o  w a v e f u n c t i o n s  c o n t a i n  3 S T O ' s  a n d  t h e  t h i r d  a n d  f o u r t h  

c o n t a i n  5 a n d  6. B e c a u s e  of  s y m m e t r y  (i.e. a n g u l a r  m o m e n t u m  a r o u n d  t he  i n t e r -  

n u c l e a r  ax is  e q u a l s  ze ro )  t h e  o r b i t a l s  np+ a n d  np_ m u s t  a p p e a r  t o g e t h e r  a n d  

t e r m s  s u c h  as  (lsnp+) d o  n o t  c o n t r i b u t e  to  t h e  g r o u n d  s ta te .  
T h e  effect  o f  a n g u l a r  c o r r e l a t i o n  c a n  b e  s een  in  Fig.  2. O n e  e l e c t r o n  is h e l d  

f ixed  a t  a d i s t a n c e  0.4 a.u.  a l o n g  a p e r p e n d i c u l a r  c o n s t r u c t e d  a t  t he  m i d p o i n t  o f  
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T a b l e  8. Optimized orbital exponents, internuclear distances and energies for functions with angular 
correlation 

n 

2 3 2 2 

~1~ 1,1983 1.1994 1.0800 1.1000 

~2p - -  - -  1.9016 1.9000 

~3~ - -  - -  1.6396 1.6400 

~ ,p ,  a 1.9971 3.0021 1.8847 1.9000 

~3d - -  - -  - -  3 .0000  

R(a . u . )  1.4128 1.4148 1.3930 1.3935 

E(a .u . )  - 1 .1535740 - 1 .1530245 - 1 .1651503 - 1 .1655531 

a T h e  s a m e  e x p o n e n t  w a s  u s e d  fo r  np+ as  fo r  np_. 

T a b l e  9. Optimized wavefunctions with angular correlation 

N u m b e r  o f  S T O ' s ,  n 

T e r m  3,2 3,3 5,2 6,2 

( l s  l s ) c  0 .9356  0 .9364  1.079 1.022 

( l s 2 p o ) c  - -  - -  0 .03390  0 .02854  

( l s 3 s )  c - -  - -  - 0 .08868 - 0 .04144  

( l s 3 d o )  c . . . .  0 .01620  

(2po2po)c  - -  - -  - 0 .0003374  0 .001463 

(2po 3S)c - -  - -  0 . 08300  0 .08924  

(2po3do)c  - -  - -  - -  0 .0005660  

(3s3s)  c - -  - -  0 .02986  0 . 0 3 1 6 2  

(3s3d)c  - -  - -  - -  0 .02650  

(np+ np_)c 0 .07884  0 .07312  0 .08648  0 .08544  

(3do 3do)c . . . .  0 .00008978  

( l s l s ) x  0 .2524  0 .2526  0 .2674  0 .2712  

(2po2po)t  - -  - -  - 0 .02406  - 0 .02450  

(3s3s)x - -  - -  - 0 .2014  - 0 .1882  

(3do 3do)l . . . .  0 .04246  

0 . 0 9  

OJ 
- -  0 . 0 8  

C~ 

- -  0 . 0 7  

__ls 2po 3s 2p, 2p .  ~ ~ - ; - - . i s  3pzp. 
"~.~'" Is 2p.  2p. 

ls  2p 3S 2~ 2p 3d 

0 - 0 6  I I I I I I I I I 

0 ~ 4 0  ~ 8 0  ~ 1 2 0  ~ 1 6 0  ~ 

F i g .  2. P r o b a b i l i t y  d e n s i t i e s  o f  w a v e f u n c t i o n s  w i t h  a n g u l a r  c o r r e l a t i o n  (see t e x t  fo r  d e s c r i p t i o n )  
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the internuclear axis; the other electron starts at the same point and is allowed 
to move around the internuclear axis along a circle of radius 0.4 a.u. It can be 
seen that I~pl a is largest when the two electrons are on opposite sides of the inter- 
nuclear axis. Note that the wavefunction with 3p+ and 3p_ shows more angular 
correlation than the one with 2p + and 2p_ in spite of the fact that the latter gives 
a lower energy. One might expect that the 2p_+ function would show more right- 
left or in-out correlation to account for this, but this is not the case. In Fig. 3, 
one electron is fixed at one nucleus and the other is moved along the internuclear 
axis. The 2p+_ and 3p_+ functions show identical left-right correlation. Similarly, 
the two functions have identical in-out correlation in Fig. 4 where one electron 
is fixed at the midpoint of the internuclear axis and the other is moved per- 
pendicularly outward from that point. 

The energy of the 5-STO function with angular correlation is better by 
0.0058 a.u. than the 6-STO function without. Further, because of symmetry there 
are only 10 terms in the former but 27 terms in the latter function. The 6-STO 
function listed in the last column of Table 9 was the best obtained in our work 
and gave an energy of - 1.16555 a.u. The addition of further terms was attempted, 
but even the wavefunction constructed from ls, 3s, 2p§ 2p_, 3d+ and 3d_ STO's 
which gave E = - 1.159438 a.u. saturated the storage of the IBM 7072 computer 
used in this work. 

Appendix 
Optimization of orbital exponents was done by the method of steepest 

descents which involves computation of the gradient in the space of E(~I, ~2, ...) 
followed by a search for minimum E along the direction of the gradient. The 
process is then repeated starting at this point. The method has the advantage 
that the multiparameter search is replaced by repeated application of a 1 para- 
meter search; the 1 parameter being distance along the gradient. Such searches, 
at least under the assumption of a single minimum, are particularly susceptible 
to analysis so that one knows the interval of uncertainty after a given number 
of sample points. These matters are all clearly discussed by Wilde [26], but we 
shall sketch the method used since we are aware of no reference to it in quantum 
chemical applications. 

Search by "golden section" was used to locate the minimum along the gradient. 
This is one of the class of minimax methods which seek to minimize the maximum 
interval in which the extremum being sought could lie. As a class these methods 
are conservative (i.e. non-gambling) in that they take account of the worst possible 
outcome in the drawing of sample points. 

Consider f(x) with a single minimum in the interval 0 < x <_ L. If one wants 
to locate the minimum of f(x) as closely as possible by only two evaluation of f ,  
then the two should be as near as possible the midpoint of the interval, say at 
� 8 9  3. If f(�89 + 3)< f(�89 6), then the minimum lies in the interval of length 
�89 + ~ bezween x = �89 - 6 and x = L. Note that this length is smallest if the points 
are near the midpoint. The function could then be examined at two points near 
the center of the remaining interval and the process continued. This is called 
the method of "dichotomous search" and is the most efficient only if the total 
number of points is to be limited to 2. 
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In the m e t h o d  of  go lden  sect ion the two po in t s  are p laced  symmet r ica l ly  in 
the in terval  so tha t  x 1 + x 2 = L and  in the ra t io  L / x  2 = x 2 / x  1 = z, called the 
"golden  section".  These  cond i t ions  give z 2 - z - l = 0 ,  hence z=1 .6180 .  If  
f ( x l )  > f ( x 2 ) ,  then the m i n i m u m  mus t  be in the in terval  0 < x < x2. On ly  a b o u t  
0.38 of  the in terval  has been e l imina ted  as c o m p a r e d  to 0.5 in the d i c h o t o m o u s  
search. However ,  no te  tha t  x l  a l r eady  prov ides  one of the requi red  po in ts  for 
searching the r ema in ing  interval .  In  the next  cycle the funct ion need be eva lua ted  
only at  one fur ther  po in t  p laced  so tha t  it and  xl are  symmet r i c  a b o u t  the center  
of  the in terval  (0, x2). In  the long run  then, search by golden  sect ion becomes  
a b o u t  0.38/0.25 as efficient as d i c h o t o m o u s  search. 

A somewha t  m o r e  efficient m e t h o d  still, the "F ibonacc i  Search Technique",  
requires  tha t  the  n u m b e r  of  sample  po in ts  be fixed ahead  of  t ime [26], a cond i t ion  
one does  no t  usua l ly  wan t  to  a p p l y  in energy min imiza t ions .  
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